Classic Algebra: 整数 有理数 实数 复数 加减乘除
Abstract Algebra: 构造新的number system,通常只说 加和乘(减和除用inverse表示),并且加和乘用更通用的 composition来代表,在abstract algebra中,如果不说具体的additive或multiplicative,通常是用 ◦ / + / x 或直接xy不带任何符号来表示一种composition方式,composition可以是加或乘法或模运算甚至是set permutation等
group 闭合,Single composition law: 要么加,要么乘(必须存在inverse)
ring 闭合,multiple composition law: 既要加(满足additive composition law),又要乘(满足multiplicative composition law,环中乘法不一定有单位元也不一定要满足交换律,不一定存在inverse)
field 闭合,既可以加也可以乘(由加群和乘“群”组合而成)
例子:prime finite field:Fp , p = 2, 3, 5, 7 ,11, 13, ….. | Fp | = p, Z/(pZ)={ 0¯, 1¯, 2¯,(p-1)¯ } |
= ≠
≤
根号 √
∞ 无穷
◦ composition
⊆表示包含于 improper subset,下面有不等号≠的表示真包含于proper subset,但在同济版高等数学中,⊂表示包含于,下面有不等号的表示真包含于。
交集 ∩ 并集 U
∃ 存在
∀ 任意
∈ 属于 ∉ ≡ 同余符号
累加累乘
\[\sum_{i=1}^n \frac{1}{i^2} \quad and \quad \prod_{i=1}^n \frac{1}{i^2} \quad and \quad \bigcup_{i=1}^{2} R\]https://math.meta.stackexchange.com/questions/5020/mathjax-basic-tutorial-and-quick-reference
希腊字母
uppercase Σ, lowercase σ
https://reference.wolfram.com/language/guide/GreekLetters.html.zh
domain -> codomain bijective surjective injective
https://www.mathsisfun.com/sets/injective-surjective-bijective.html
block ciphers VS stream ciphers
3 problems:
PKI: public key infrastructure (Public-Key Cryptosystems) === Asymmetric Cryptography
DLP: Discrete Logarithm Problem
DHK: Diffie–Hellman key exchange
Confusions and Diffusions
Theory: finite field/Galois field/Prime Fields/Extension Fields GF(2m)
DES
AES
based on 大数分解素数
theory: Euclidean Algorithm / Extended Euclidean Algorithm / Euler’s Phi Function / Fermat’s Little Theorem and Euler’s Theorem
based on discrete logarithm
Theory: hash function(for signing long message)
RSA
Elgamal
DSA
ECDSA
就是如何发布和管理相关的密钥
Symmetric
Asymmetric
Pub key => CA
加密狗 Dongle